Question 3. In
$$\triangle ABC$$
, ones of $\triangle ABC = 18$, ones of $\triangle BDF = 2$,
length of $DF = 2JE$. End the circumstatives of $\triangle ABC$.
Here, $D \& F$ are the fect of altitudes from $A\& C$ respectively
(a) $\frac{9}{2}$
(b) $\frac{8}{5}$
(c) $\frac{7}{4}$
(d) 1
Solution:-
We knows that the area of a taiongle is:-
 $Area = \frac{1}{2}ab Sin C$
: area of $\triangle BDF = \frac{1}{2} \times BD \times DF \times SinB$
 $2 = \frac{1}{2} \times C (BB \times a CBS B \times Sin B)$
 $\Rightarrow a C Sin B = 36$
Now, area of $\triangle ABC = 18$
 $\Rightarrow a C Sin B = 36$
Now, dividing equadion (1) By equation (2):-

Now, dividing equation (1) by equation (2):

$$Gs^{2}B = \frac{4}{36} = \frac{1}{3}$$

$$\Rightarrow \qquad (as B = \frac{1}{3} - 3)$$
Now, using the formulae of side of bedat toxiangle:

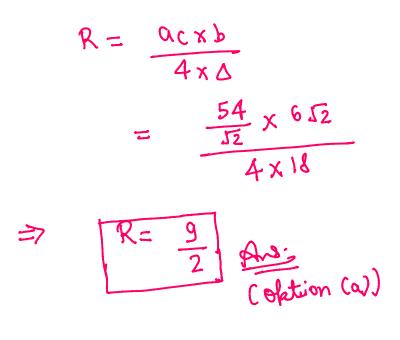
$$\Rightarrow \qquad DF = blos B$$

$$2JZ = bx \frac{1}{3}$$

$$\Rightarrow \qquad b = 6JZ - 4$$
Now, from equation (2), $ac = \frac{36}{8inB}$

$$= \frac{36}{\sqrt{1-\frac{1}{3}}}$$

$$= \frac{36}{-\sqrt{1-\frac{1}{3}}}$$


$$= \frac{36}{-\sqrt{12}/3}$$

$$ac = \frac{54}{JZ} - 5$$

Now, we know that,

$$Circumradius = R = \frac{abc}{4a}$$

